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Abstract
We study a class of quantum measurement models. A microscopic object is
entangled with a macroscopic pointer such that a distinct pointer position is
tied to each eigenvalue of the measured object observable. Those different
pointer positions mutually decohere under the influence of an environment.
Overcoming limitations of previous approaches we (i) cope with initial
correlations between pointer and environment by considering them initially in a
metastable local thermal equilibrium, (ii) allow for object–pointer entanglement
and environment-induced decoherence of distinct pointer readouts to proceed
simultaneously, such that mixtures of macroscopically distinct object–pointer
product states arise without intervening macroscopic superpositions, and
(iii) go beyond the Markovian treatment of decoherence.

PACS numbers: 03.65.Ta, 03.65.Yz

1. Introduction

The interpretation and theoretical description of measurements on quantum systems have been
under debate since the birth of quantum theory [1]. More recently, interest in this question
has been revived by new developments in quantum information. Quantum detection can be
used either to extract information on quantum states or to monitor quantum systems (quantum
trajectories [2], quantum Zeno effect [3]). Quantitative treatments of measurement models
serve both to elucidate the self-consistency of quantum theory and its interpretation, and to
calculate the time scales relevant for experiments. Data for the decoherence time are in fact
accumulating, in microwave cavities [4], in solid-state devices like superconducting tunnel
junction nanocircuits [5, 6], and in electron beams interacting with a semiconducting plate
[7]. On a more fundamental ground, ever larger classes of nonlocal hidden-variable theories
are being ruled out experimentally as competitors of quantum mechanics [8].
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We propose, in this communication, to extend the range of validity of the approach by
Zeh, Zurek, and others based on environment-induced decoherence [9–14]. In this vein, i.e.,
on the basis of the probabilistic interpretation of quantum mechanics (Born rules) and of a lack
of knowledge about the microscopic degrees of freedom of the apparatus, we demonstrate that
the reading of a macroscopic pointer of the apparatus reveals an eigenvalue of an observable
of the measured quantum object, in spite of the unitary evolution of the composite system
(object and apparatus). We obtain explicit results for the object–pointer dynamics for a class
of models under realistic assumptions. We would like to note that macroscopic manifestations
of microscopic quantum fluctuations are not the exclusive privilege of measurement: they
also appear e.g. in superfluorescence, where intense light pulses display substantial shot-to-
shot fluctuations [15] and in cosmic rays, where single particles propagating in a fluctuating
spacetime generate large showers of particles in the atmosphere.

During an ideal measurement the quantum object (S) interacts with the pointer (P) in such
a way that a one-to-one correspondence arises between the eigenvalues of the measured object
observable and macroscopically distinct pointer states. The coupling ofP with its environment
(‘bath’B) causes decoherence. Most previous work deals with these two interactions separately
(see, however, [13, 14]): a first step (‘premeasurement’) exclusively treats the unitary evolution
entangling S and P and yields a superposition of the macroscopically distinct object–pointer
states associated with each eigenvalue of the measured observable. That latter ‘Schrödinger
cat’ state is taken as the initial state for a second process, decoherence; there, the quantum
correlations between object and apparatus are transformed into classical correlations, as the
superposition of object–pointer states is degraded to a statistical mixture of the same states.
For such a sequential treatment to make physical sense, the time duration of the entanglement
process would have to be short compared with the decoherence time tdec. But since the latter
tends to be very small for macroscopic superpositions, that assumption is quite questionable.
A second shortcoming of some previous work lies in the assumption of initial statistical
independence of P and B; since these two systems cannot be isolated from each other, a
more realistic assumption is a metastable local thermal state of P + B. As a third restriction,
memory effects are often neglected for the (reduced) object–pointer dynamics. That Markov
approximation assumes tdec to be larger than the bath correlation time TB, a condition not
satisfied in some experiments [5, 6] and of questionable validity if macroscopic or even
mesoscopic superpositions or mixtures arise during the object–pointer evolution.

We overcome the three aforementioned deficiencies. The key is an assumption for a
certain ordering of time scales: the decoherence time tdec and the object–pointer interaction
time tint must be small compared to the characteristic time TS (TP) of the evolution of the
measured observable S (the pointer position X) under the object Hamiltonian HS (the pointer
Hamiltonian HP ),

tdec, tint � TS , tdec, tint, h̄β � TP . (1)

In the last limit, β = (kBT )−1 denotes the inverse temperature of the bath. As desirable for a
measurement, the free dynamics of S then remains ineffective on S during the measurement,
i.e., S0(t) = eiHS t/h̄S e−iHS t/h̄ � S for t � tdec, tint. Here S0(t) � S means that the expectation
value of S0(t1) · · · S0(tn) in the object initial state is approximately equal to the nth moment
of S, for any 0 � t1, . . . , tn � tdec, tint. Similarly, the free dynamics of P is ineffective to
move the pointer between t = 0 and t ≈ tdec, tint. Note that TS = ∞ if S commutes with HS .
The conditions on TS in (1) are necessary in order that an eigenstate |s〉 of S be left almost
unchanged by the measurement. The conditions on TP (in particular, the high-temperature
limit h̄β � TP ) would be difficult to avoid for a macroscopic pointer.
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A further key input is the quantum central limit theorem (QCLT) [16] which implies
Gaussian statistics (Wick theorem) for the bath coupling agent in the pointer–bath interaction,
as discussed below. The limits (1) and the QCLT imply validity of our results for a wide
class of objects and apparatus. An extreme case of universality [17] arises under the further
stipulation that entanglement and decoherence be faster than the decay of bath correlations
(time constant TB). Indeed, for tdec, tint � TB even the free bath motion remains ineffective
during the measurement. Opposite to that slow-bath limit is the Markov regime TB � tdec, tint.
Our analysis below covers both these regimes as well as the intermediate case tdec, tint ≈ TB.

2. The model

2.1. Object, pointer and bath

We consider a three-partite system comprising the microscopic object S, a single-degree-of-
freedom macroscopic pointer P and a bath B with many (N � 1) degrees of freedom (labelled
by ν). The following dynamical variables will come into play: for S, the observable S to be
measured, assumed to have a discrete spectrum; for P , the position X and momentum P ; and
for B, a certain coupling agent B. The pointer is coupled to S and B by the Hamiltonians

HPS = εSP, HPB = BX, B = N−1/2
N∑

ν=1

Bν. (2)

The object–pointer coupling Hamiltonian HPS is chosen so as to (i) not change the measured
observable S (i.e., [HPS , S] = 0); (ii) be capable of shifting the pointer position by an amount
proportional to S, such that each eigenvalue s of S becomes tied up with a specific pointer
reading; (iii) involve a large coupling constant ε, so that different eigenvalues s �= s ′ end up
associated with pointer readings separated by large distances. The pointer–bath interaction is
chosen for most efficient decoherence of distinct pointer positions [17]; the additivity of B in
contributions Bν acting on single degrees of freedom of the bath will allow us to invoke the
QCLT.

Let us point out an essential difference between our model and the interacting spin model
of [14]. Unlike in this reference, S is strongly coupled to a single degree of freedom (the
pointer P) of the apparatus, e.g. with its total momentum P in a given direction. The coupling
of S with the other apparatus degrees of freedom (the bath B, for us) is assumed to be much
weaker and can therefore be neglected (see [18]).

The full Hamiltonian is H = HS + HP + HB + HPS + HPB. We need not specify HS . The
pointer Hamiltonian HP = P 2/(2M) + V (X) must allow for a well-defined rest state. We
assume that V (x) has a local minimum at x = 0, i.e., V ′(0) = 0 and V ′′(0) > 0. The time
scale for free pointer motion then is the period TP = 2π(M/V ′′(0))1/2 of oscillations around
this minimum. Like the coupling agent B, the bath Hamiltonian HB is assumed additive as
HB = ∑

ν HB,ν with [HB,ν, Bµ] ∝ δµνḂµ and [HB,µ,HB,ν] = 0, again clearing ground for the
QCLT.

2.2. Initial state: pointer localized around x = 0, apparatus in thermal equilibrium

It is appropriate to require initial statistical independence of the object and the apparatus, and
thermal equilibrium for the apparatus. The initial density operator ρS(0) of the object may
represent a pure or a mixed state. The full initial density operator reads

ρ(0) = ρS(0) ⊗ ρPB(0), ρPB(0) = Z−1
PB e−β(HP+HB+HPB). (3)
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By invoking the high-temperature limit h̄β � TP and the Gaussian statistics of B (as implied
by the QCLT) and by tracing out the bath we find (see below) the reduced density matrix
ρP(0) = trB ρPB(0) of the pointer in the position representation,

〈x|ρP(0)|x ′〉 ∝ e−β(Veff(x)+Veff(x
′))/2 e−2π2(x−x ′)2/λ2

th (4)

where λth = 2πh̄(β/M)1/2 is the thermal de Broglie wavelength. The pointer potential here
appears renormalized by the pointer–bath interaction as

Veff(x) = V (x) − (γ0/h̄)x2, γ0 =
∫ 0

−∞
dt�h(t) � 0 (5)

where h(t) is the autocorrelator of the bath coupling agent with respect to the free bath thermal
state ρ

(eq)

B ∝ e−βHB ,

h(t) = 〈B̃(t)B〉0 = trB B̃(t)Bρ
(eq)

B , B̃(t) = eiHB t/h̄B e−iHB t/h̄ (6)

and we assume 〈B〉0 = 0. For stability of the whole apparatus the pointer–bath coupling must
be weak enough so that V ′′

eff(0) > 0; we even bound the latter curvature finitely away from
zero by, say, V ′′

eff(0) > V ′′(0)/2, i.e.,

γ0/h̄ < V ′′(0)/4. (7)

This makes sure that the initial density 〈x|ρP(0)|x〉 of pointer positions has a single peak at
x = 0 with a renormalized width 	eff = [β(V ′′(0) − 2γ0/h̄)]−1/2 of the order of the bare
thermal fluctuation 	th = (βV ′′(0))−1/2.

If V (x) = o(x2) at large distances |x|, the effective potential Veff(x) is unstable.
The matrix elements (4) then correspond to (the reduced pointer state of) a local thermal
equilibrium. That local equilibrium for the apparatus can be achieved by preparing P in some
state localized near x = 0 at time t = −ti and then letting it interact withB between t = −ti and
t = 0. If the thermalization time is small compared with the tunnelling escape time, one may
choose ti larger than the former but much smaller than the latter time, so thatP is still within the
effective potential well when the measurement starts at t = 0. In order to be able to prepare the
apparatus in such a local equilibrium, the height V eff

0 of the two potential barriers surrounding
the local minimum of Veff(x) at x = 0 must be large compared with the thermal energy
β−1. Thanks to (7), this is the case provided that the bare potential V (x) satisfies the same
requirement, i.e., V0 � β−1. Interestingly, V (x) can be chosen such that the two potential
barriers of Veff(x) are separated by a mesoscopic distance Weff ≈ (

V eff
0 /V ′′

eff(0)
)1/2 � 	eff

(so that V eff
0 � β−1) which is small compared with the macroscopic read-out scale 	class.

The object–pointer interaction then just has to get the pointer out of the well, leaving the
subsequent displacement growth to the action of the effective pointer potential. The instability
resulting from the pointer–bath coupling (2) hence provides an amplification mechanism. For
a macroscopic pointer at high temperature (h̄β � TP), the different length scales are ordered
as λth � 	th ≈ 	eff � Weff � 	class.

3. Object–pointer dynamics

Assuming that the bath state is not ascertainable, we define the object–pointer density matrix
at time t as ρPS(t) = trB e−iHt/h̄ρ(0) eiHt/h̄. Accepting a relative error O(t/TP , t/TS), we
simplify the time evolution operator at time t � TS , TP as e−iHt/h̄ � U(t) e−i(HS+HP )t/h̄, with

U(t) = e−i(HB+HPS+HPB)t/h̄ = e−iHB t/h̄ e−iεSP t/h̄
(
e−i

∫ t

0 dτ(X+εSτ)B̃(τ )/h̄
)

+. (8)
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Here, (·)+ denotes time ordering; the momentum P was used as the generator of pointer
displacements, eiεSP t/h̄Xe−iεSP t/h̄ = X + εSt . Similarly, we invoke 〈s, x| e−iεSP t/h̄ =
〈s, x − εst |, the cyclicity of the trace and the product initial state (3) to get the matrix
elements of ρPS(t) in the joint eigenbasis {|s, x〉} of S and X,

〈s, x|ρPS(t)|s ′, x ′〉 � 〈s|ρ0
S(t)|s ′〉〈x|ρss ′

P (t)|x ′〉, t � TS , TP , (9)

with

ρ0
S(t) = e−iHS t/h̄ρS(0) eiHS t/h̄ (10)

evolving as for the free object, while the pointer matrix elements

〈x|ρss ′
P (t)|x ′〉 = 〈xs(t)| trB Ũsx(t)ρPB(0)Ũs ′x ′(t)†|x ′

s ′(t)〉 (11)

involve the bath evolution operator and shifted positions

Ũsx(t) = (
e−i

∫ t

0 dτxs (t−τ)B̃(τ )/h̄
)

+, xs(t) = x − εst, x ′
s ′(t) = x ′ − εs ′t. (12)

Note that e−iHP t/h̄ρPB(0) eiHP t/h̄ � ρPB(0) for t � TP . The Hamiltonian HS cannot be
neglected in (10), even for t � TS , although for such times 〈s|ρ0

S(t)|s〉 � 〈s|ρS |s〉.
To evaluate the matrix elements (11) we use the high-temperature approximation

ρPB(0) � Z−1
PB e−βHP/2 e−β(HB+HPB) e−βHP/2 (13)

for the pointer–bath Gibbs state (3). Given the weak-coupling condition 	2
thβ

2〈B2〉0 < 1/2
implying the stability (7) (thanks to γ0 � h̄β〈B2〉0/2, see [18]), the error incurred is
O

(
h̄2β2/T 2

P
)
, as easily seen from the Baker–Campbell–Haussdorf formula. Thus

〈x|ρss ′
P (t)|x ′〉 ∝

∫
dy〈xs(t)| e−βHP/2|y〉〈y| e−βHP/2|x ′

s ′(t)〉ZB,y〈Ũs ′x ′(t)†Ũsx(t)〉y (14)

where 〈·〉y is the bath average with respect to the modified equilibrium state ρB,y =
Z−1

B,y e−β(HB+yB); the normalization factor is determined by using the QCLT as [18]

ZB,y = eβγ0y
2/h̄ZB,0. (15)

At this point we momentarily pause with dynamics and show that at t = 0, when
Ũs ′x ′ = Ũsx = 1, xs = x and x ′

s ′ = x ′, (14) yields the initial pointer state announced in (4).
To that end we invoke high temperatures h̄β � TP again to approximate the matrix
element 〈x|e−βHP/2|y〉 by e−β(V (x)+V (y))/4e−4π2(x−y)2/λ2

th . Replacing V (y) by V ′′(0)y2/2 in
that expression and doing the Gaussian y-integral in (14), we arrive at the initial state (4) by
neglecting terms O

(
λ2

th

/
	2

th, λ
2
th

/
	2

eff

)
.

Let us return to the time-evolved pointer matrix (14). Since ρB,y factors into single-
degree-of-freedom states, the QCLT assigns Gaussian statistics to the bath coupling agent B
for the average 〈·〉y , with a mean 〈B̃(τ )〉y ∝ y given by linear response theory and a variance
independent of y [18],

〈B̃(t)〉y = −2y

h̄

∫ t

−∞
dτ�h(τ), 〈B̃(t)B̃(t ′)〉y − 〈B̃(t)〉y〈B̃(t ′)〉y = h(t − t ′). (16)

Therefore, 〈Ũs ′x ′(t)†Ũsx(t)〉y coincides with its value for y = 0 up to a phase factor

ei
∫ t

0 dτ 〈B̃(t−τ)〉y (x ′
s′ (τ )−xs (τ ))/h̄ and the y-integral in (14) remains Gaussian for t > 0.

Of prime importance is the decoherence factor

〈Ũs ′x ′(t)†Ũsx(t)〉0 = e−Dt (xs (t),x
′
s′ (t);s,s ′)−iφt (x,x ′;s,s ′) (17)

with a positive decoherence exponent Dt revealed by the QCLT as [17, 18]

Dt(x, x ′; s, s ′) = 1

h̄2

∫ t

0
dτ1

∫ τ1

0
dτ2h(τ1 − τ2)

× (x ′
s ′(−τ1) − xs(−τ1))(x

′
s ′(−τ2) − xs(−τ2)) (18)

5
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and a real phase φt irrelevant for decoherence. Let us stress that the aforementioned results
(in particular (18)) are exact (not lowest order in the pointer–bath coupling). They are
consequences of Wick’s theorem as implied by the QCLT and the additivity (2) of the bath
coupling agent B. Direct proofs of (15), (16) and (18) are easy in the particular case of a bath
composed of harmonic oscillators linearly coupled to P .

It turns out [18] that the phase factor 〈Ũs ′x ′(t)†Ũsx(t)〉y/〈Ũs ′x ′(t)†Ũsx(t)〉0 entails nothing
but a correction of relative order (λth/	eff)

2 to the decoherence exponent Dt under the
stability condition (7). Dropping that correction, the y-integral reduces to the initial pointer
density matrix (4), albeit with the shifted pointer positions x → xs(t) = x − εst and
x ′ → x ′

s ′(t) = x ′ − εs ′t reflecting the action of the object–pointer coupling. Our final result
for the object–pointer state at time t � TS , TP is

〈s, x|ρPS(t)|s ′, x ′〉 = 〈s|ρ0
S(t)|s ′〉〈xs(t)|ρP(0)|x ′

s ′(t)〉 e−Dt (xs (t),x
′
s′ (t);s,s ′)−iφt (19)

with the notations specified in (4), (10) and (18). Entanglement and decoherence contribute
separately in that remarkably simple ‘final state’; they lead respectively to the second and third
factors in (19). The decoherence (third) factor equals unity for s = s ′ and x = x ′.

4. Discussion

Given the narrow peaks (of width 	eff) of the initial pointer density matrix (4) at x = x ′ = 0,
one can appreciate the fate of the s �= s ′ coherences in the final state (19) by setting
xs(t) = x ′

s ′(t) = 0 there. The decoherence factor then reads

e−D
peak
t (s,s ′) = exp

{
−ε2(s − s ′)2

h̄2

∫ t

0
dτ1

∫ τ1

0
dτ2τ1τ2h(τ1 − τ2)

}
(20)

and reveals irreversible decay as soon as the time t much exceeds the decoherence time
tdec(s, s

′); we may define that time implicitly as D
peak
tdec

(s, s ′) = 1. It can be shown [18] that

D
peak
t (s, s ′) is an increasing convex function of time (see the inset in figure 1).

The diagonal (s = s ′ and x = x ′) terms in the final state (19) give the probability density
of pointer positions for fixed s. That density has a sharp peak (of width 	eff) at x = εst .
The peaks associated with distinct s and s ′ begin to be resolved at the entanglement time
tent(s, s

′) = 	eff(ε|s − s ′|)−1. That time is related to tdec(s, s
′) by(

tent(s, s
′)

η

)2

= 1

(h̄β)2

∫ tdec(s,s
′)

0
dτ1

∫ τ1

0
dτ2τ1τ2

h(τ1 − τ2)

〈B2〉0
(21)

where η = 〈B2〉1/2
0 	effβ is a dimensionless measure of the strength of the pointer–bath

coupling. Figure 1 shows tdec as function of tent/η for three distinct choices of the bath
correlator h(t)/〈B2〉0.

Let us note that, in analogy with the results of [14], the s �= s ′ matrix elements of the
reduced density matrix of S, 〈s| trP ρPS(t)|s ′〉, decay to zero on a time scale λth(ε|s − s ′|)−1

much shorter than both tent(s, s
′) and tdec(s, s

′) (see (4) and (19)).
Recalling that S has a discrete spectrum, we denote by δs the minimum of |s − s ′| over

all pairs (s, s ′) of eigenvalues present in the object initial state (we suppose that 〈s|ρS |s ′〉 = 0
if s and s ′ belong to a part of the spectrum containing arbitrarily close eigenvalues, near an
accumulation point, so that δs > 0). At time t > tent = 	eff(εδs)

−1, neighbouring peaks of
the pointer densities can be resolved. Each eigenvalue s of the measured object observable
is then uniquely tied up with ‘its’ pointer position εst . If t is also much larger than the

6
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Figure 1. Decoherence time τdec = tdec/TB in units of TB against tent/(ηTB) in a log–log scale.

We take ̂h(ω) = i coth(h̄βω/2)�̂h(ω) (KMS relation) and �̂h(ω) ∝ ωm e−(h̄βω/5)2
. The larger

decay time of the bath correlator h(t) is then the thermal time TB = h̄β. Solid curves: m = 5, 3, 1
(from left to right). Broken curves: approximate expressions (22)–(23) for τdec � 1 (dashed lines)
and τdec � 1 (dotted lines). Inset: decoherence exponent D

peak
t against τ = t/TB (m = 3).

maximum decoherence time tdec = tdec(s, s ± δs) (t being still smaller than TS and TP ), the
matrix elements (19) for s �= s ′ almost vanish for all values of (x, x ′). Assuming moreover
that the spectrum of S is non-degenerate, object and pointer are in a separable mixed state,
ρPS(t) � ∑

s ps |s〉〈s| ⊗ ρss
P (t), with ps = 〈s|ρ0

S(t)|s〉 � 〈s|ρS |s〉. Hence, according to
the Born rule, with probability ps the object is in the eigenstate |s〉 and the pointer is in
a state ρss

P (t) localized near x = εst with probability density 〈x|ρss
P (t)|x〉 ∝ e−βVeff(x−εst),

in agreement with the von Neumann postulate. The coupling HPS may be switched off at
time tint ≈ Weff(εδs)

−1 � tent, where Weff is defined in subsection 2.2. Then all pointer
states ρss

P (t) are outside the effective potential well saved for one eigenvalue s = 0. The
inter-peak distance is amplified at time t > tint by the effective pointer dynamics, till it reaches
a macroscopically resolvable magnitude 	class. Then a pointer reading, while still a physical
process in principle perturbing P , surely cannot blur the distinction of the peaks.

5. Limiting regimes

Formula (21) explicitly yields the decoherence time in two interesting limits. An interaction
dominated regime has decoherence outrunning bath correlation decay (tdec � TB) such that
we can use h(τ) � 〈B2〉0 in (20) and (21). We conclude

e−D
peak
t (s,s ′) = e−(t/tdec(s,s

′))4
,

tdec(s, s
′)

h̄β
= 23/4

(
tent(s, s

′)
h̄βη

)1/2

(22)

for tdec � TB, TS , TP . The decoherence time depends on the bath through the pointer–bath
coupling strength η only. It is smaller than tint when tent � 81/2 η−1(	eff/Weff)

2h̄β. The
small-time behaviour (22) of the decoherence factor appears also in other models [14].

The opposite limit tdec � TB defines the Markovian regime. A rotating-wave
approximation is inappropriate due to our restriction (1). Assuming that the Fourier transform
of the imaginary part of h behaves as (�̂h)(ω) ∝ ωm when ω → 0, we find

e−D
peak
t (s,s ′) = e−(t/tdec(s,s

′))γ ,
tdec(s, s

′)
h̄β

= c1/γ
m

(
tent(s, s

′)
h̄βη

)2/γ

(23)

7



J. Phys. A: Math. Theor. 41 (2008) 072002 Fast Track Communication

for TB � tdec � TS , TP . Here γ = 3 for a ‘Ohmic bath’ (m = 1) and γ = 2 for a ‘super-
Ohmic bath’ (m � 3); the constant cm is independent of the strengths of the couplings (2),
c1 = 3h̄β〈B2〉0/

∫ ∞
0 dτh(τ) and cm�3 = 2h̄2β2〈B2〉0/|

∫ ∞
0 dττh(τ)|.

In all cases the coherences decay non-exponentially. We compare in figure 1 the
asymptotic results (22)–(23) with numerical solutions of (21). One finds an excellent
agreement except for a thin range around tdec = TB = h̄β. If η � 1, the only regime
with a decoherence faster than resolution of pointer peaks (tdec � tent) is the Markov
regime (tent � c1η

−2h̄β) with m = 1 (Ohmic bath). In all asymptotic regimes tdec � tint

if η � c
1/2
m 	eff/Weff and tent � h̄β max{(8/cm)1/2, 1}	eff/Weff . This means that mesoscopic

superpositions decay to mixtures faster than entanglement can create them.

6. Conclusion and outlook

We have investigated a model for quantum detection in which the entanglement produced by
the coupling of the measured object with the pointer is simultaneous with decoherence of
distinct pointer readouts; the apparatus (pointer and bath) is taken initially in a local thermal
metastable state, not correlated to the object. We have shown that the decoherence time
tdec presents a universal behaviour in the interaction-dominated regime tdec � TB, whereas
it depends strongly on the small-frequency behaviour of the bath correlator in the Markov
regime tdec � TB. For reasonably strong pointer–bath and weak object pointer couplings, tdec

is smaller than the time tint needed by entanglement to produce mesoscopic superpositions,
which do not appear at any time during the measurement.

Several generalizations of our results present no difficulties. First, nonlinear pointer–bath
couplings, HPB = BXα with α > 1, make richer decoherence scenarios and produce smaller
decoherence times saved for Ohmic baths in the Markovian regime [18]. Second, the QCLT
also works for baths of interacting particles if the correlator 〈BµBν〉0 decays more rapidly than
1/|µ − ν| (see [19] for a related version of the QCLT in this context). We shall publish these
elaborations elsewhere.

Acknowledgments

We acknowledge support by the Deutsche Forschungsgemeinschaft (through the project
SFB/TR 12) and the Agence Nationale de la Recherche (project ANR-05-JCJC-0107-01)
and thank M Guta for pointing out [16] to us.

References

[1] Wheeler J A and Zurek W H 1983 Quantum Theory and Measurement (Princeton, NJ: Princeton University
Press)

[2] Plenio M B and Knight P L 1998 Rev. Mod. Phys. 70 101, and references therein
[3] Fischer M C, Gutierrez-Medina B and Raizen M G 2001 Phys. Rev. Lett 87 040402

Toscheck P E and Wunderlich C 2001 Eur. Phys. J. D 14 387
[4] Brune M, Hagley E, Dreyer J, Maı̂tre X, Maali A, Wunderlich C, Raimond J-M and Haroche S 1996 Phys. Rev.

Lett. 77 4887
[5] Ithier G et al 2005 Phys. Rev. B 72 134519
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